DPP - 3

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/63
https://youtu.be/BxSn5XyyhAc

Q 1. Which logic gate is represented by the following combination of logic gates -

(a) OR
(b) NAND
(c) AND
(d) NOR

Q 2. Add binary numbers $101+110=$?
(a) 1011
(b) 1001
(c) 0111
(d) 111

Q 3. Given below are symbols for some logic gates. The XOR gate and NOR gate respectively are

(a) 1 and 2
(c) 3 and 4

(1)

(3)

(2)

(4)
(b) 2 and 3

Q 4. The following truth table corresponds to the logic gate

A	0	0	1	1
B	0	1	0	1
X	0	1	1	1

(a) NAND
(b) OR
(c) AND
(d) XOR

Q 5. What will be the input of A and B for the Boolean expression $\overline{(A+B)} \cdot \overline{(A \cdot B)}=1$
(a) 0,0
(b) 0,1
(c) 1,0
(d) 1,1

Q 6. Which of the following logic gate is an universal gate
(a) OR
(b) NOT
(c) AND
(d) NOR

Q 7. Boolean algebra is essentially based on
(a) Truth
(b) Logic
(c) Symbol
(d) Numbers

Q 8. The logic circuit shown below has the input waveforms ' A ' and ' B ' as shown. Pick out the correct output waveform

(a)

Q 9. The truth table for NOT gate is

Input	output
1	1
0	0

(a)

Input	output
1	0
0	1

(c)

(b)

(d)

Q 10. In the Boolean algebra, the following one is wrong
(a) $1.0=0$
(b) $0.1=0$
(c) $1.1=0$
(d) $1.1=1$

Q 11. For the combination of gates shown here, which of the following truth table part s not true?

(a) $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1$
(b) $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0$
(c) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$
(d) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$

Q 12. The combination of the gates shown above produces

(a) AND gate
(b) XOR gate
(c) NOR gate
(d) NAND gate

Q 13. The combination of gates shown below yields
(a) NAND gate
(b) OR gate
(c) NOT gate
(d) XOR gate

Q 14. The combination of gates shown below produces

(a) AND gate
(b) XOR gate
(c) NOR gate
(d) NAND gate

Q 15. The output of the combination of the gates shown in the figure below is

(a) $A+(A \cdot B)$
(b) $(\mathrm{A}+\mathrm{B}) \mathrm{A}+\bar{B}$
(c) $(\mathrm{A} . \mathrm{B})+(\bar{A} \cdot \bar{B})$
(d) $(\mathrm{A}+\mathrm{B})(\overline{A . B})$

Q 16. The output Y of the combination of gates shown in equal to:

(a) A
(b) \bar{A}
(c) $A+B$
(d) $A \cdot B$

Answer Key

Q. 1 c	Q. 2 a	Q. 3 b	Q. 4 b	Q. 5	a
Q. 6 d	Q. 7 b	Q. 8 a	Q. 9 c	Q. 10	c
Q. 11 a	Q. 12 d	Q. 13 b	Q. 14 d	Q. 15	a
Q. 16 a					

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

NEET \& JEE Main Written Solution

DPP-3 Semi Conductors: Logic Gates \& Digital Electronics
By Physicsaholics Team

Solution: 1

Solution: 2

$$
\frac{\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)\binom{1}{0}}{101}
$$

$$
\text { so; } 101+110=101
$$

Ans. a

Solution: 3

(1) NAND gate.

(3) NOR gate

(2) XOR gate

(4)

Ans. b

Solution: 4

A	0	0	1	1
B	0	1	0	1
X	0	1	1	1

$$
\begin{aligned}
& A+B=X \\
& 00
\end{aligned}
$$

$$
\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}
$$

Larrect thuth tuble

$$
\begin{aligned}
& \text { sor } x=A+B \text { thuthntable } \\
& \text { oR gate Ans. }
\end{aligned}
$$

Ans. b

Solution: $5 \quad \overline{(A+B)} \cdot \overline{(A \cdot B)}=1$
(b)

For output;

$$
\begin{aligned}
Y & =\overline{(A+B)} \cdot(\overline{A \cdot B}) \\
& =(\bar{A} \cdot \vec{B}) \cdot(\bar{A}+\vec{B}) \\
& =(\bar{A} \cdot \vec{B}) \cdot \bar{A}+\vec{A} \\
& =\bar{A} \cdot \vec{B}+\vec{A} \cdot \vec{B} \\
& =\bar{A} \cdot \vec{B}
\end{aligned}
$$

$$
=(\bar{A} \cdot \vec{B}) \cdot \bar{A}+(\vec{A}-\vec{B}) \cdot \vec{B}
$$

soj; (a) 0,0

$$
y=\overline{(0+0)}=102 \text { Ars }
$$

Ans. a

Solution: 6
NOR gates are considered as universal gates, because all the gates like AND, OR, NOT can be obtained by using only NOR gates.

Ans. d

Solution: 7

Boolean algebra is essentially based on logic. It is also known as logical algebra.

Ans. b

$$
y=\overline{(\bar{A}+\bar{B})}
$$

$$
y=A \cdot B
$$

Ans. a

Solution: 9
NOT gate gives the reverse of the input as output. Truth table for NOT gate is:

Solution: 10
In the Boolean algebra,
$1.0=0$
$0.1=0$
$1.1=1$

Ans. c

Solution: 11
(C)

Soj,
(b)
(a)

$$
C=A+(A \cdot B)
$$

$$
\begin{aligned}
& A=0, B=1 \\
& C=0+(0-1) \\
& C=0
\end{aligned}
$$

$$
\begin{aligned}
& C=0 \\
& A=0 ; B=0 \\
& C=0+(0.0) \\
& C=0
\end{aligned}
$$

sop (8) is not true

Ans. a

Solution: 12

Solution: 13

Ans. b

Solution: 14

Ans. d

Solution: 15

Ans. a

Ans. a

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/63

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/BxSn5XyyhAc
https://physicsaholics.com/note/notesDetalis/22

Chalo Niklo

